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Introduction. In 1899 Arnold Sommerfeld (1868–1951) wrote a paper of which
Robert Warnock (Reed ’52, my friend of 65 years) has recently prepared an
English translation: “On the propagation of electrodynamic waves along a
wire.” The paper provides what is claimed to be the “first rigorous solution”
of a basic physical problem which to this day still provokes dispute, but the
physics need not concern us here.

Central to Sommerfeld’s discussion is the (complex extension of) the
function y(x) defined by functional inversion of

x(y) = y log y

Looking to the graph of x(y) [Figure 1] we see that x(0) = 0, the curve descends
to a minimum x(1/e) = −1/e and then ascends monotonically, passing through
x(1) = 0. From d

dx [y(x) log y(x) − x = 0] we obtain

y ′(x)[1 + log y(x)] − 1 = 0

for which Mathematica provides solutions

y(x) = x + c
LambertW(x + c)

but with this WARNING: “Inverse functions are being used by Solve, so some
solutions may not be found.” To achieve y(0) = 1 we set the constant of
integration c = 0, so are led to

y(x) = x
LambertW(x)

(1.1)

If we write y(x) = ew(x) we are led by a similar argument to

y(x) = eLambert(x) (1.2)

Properties of the LambertW function—which henceforth I will denote w(x)
—are developed in none of the usual handbooks,1 but Google leads one to a

1 Abramowitz & Stegun, Erdélyi et al , Magnus & Oberhettinger, Gradshteyn
& Ryzhik, Spanier & Oldham.
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great many web sources; I have found the Wolfram MathWorld article, the
Wikipedia article “Lambert W Function” and especially a paper by Corless et
al 2 to be helpful. The function originates in work of Lambert (1758), came to
Euler’s attention in 1764 and some of its properties were developed by Euler
in 1783. Since that time, because it arises in scientific applications of such
remarkable variety, it has been reinvented every decade or so: Sommerfeld’s
reinvention is but one among the many.

Lagrange inversion. The consistency of equations (1) hinges on the Lambert
identity ew(x) = x/w(x); i.e., upon the fact that w(x) is the functional inverse
of

wew = x(w)

—x(w) = w ew is plotted inFigure 2—just as u(x) = log x is the functional
inverse of

eu = x(u)

The functions w(x) and log x are evidently close relatives, and it is no surprise
that the analytic properties of the former mimic those of the latter.

Because the leading (constant) coefficient in

eu = 1 + u + 1
2u2 + 1

6u3 + 1
24u4 + · · · = x

is non-zero we cannot use Lagrange’s inversion formula to develop u(x) as a
power series in x, though from

eu − 1 = 0 + u + 1
2u2 + 1

6u3 + 1
24u4 + · · · = x

we by Lagrange inversion3 obtain

log(1 + x) = x − 1
2x2 + 1

3x3 − 1
4x4 + · · ·

On the other hand, the leading term in

w ew = w + w2 + 1
2w3 + 1

6w4 + 1
24w5 + · · ·

does vanish, so Lagrange inversion is available, and produces

w(x) = x − x2 + 3
2x3 − 8

3x4 + 125
24 x5 + · · · (2)

which is precisely the result produced by Series[LambertW[x],{x,0,5}]].

2 R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffery & D. E. Knuth,
“On the Lambert W function,” Advances in Computational Mathematics 5,
329–359 (1996). Corless, Hare and Jeffery are Canadian, so prefer Maple over
Mathematica. The first four of those authors wrote “Lambert’s W function in
Maple,” The Maple Technical Newsletter 9, 12–22 (no date given).

3 Mathematica permits one to avoid the complications that attend Lagrange
inversion: define g(u) = eu − 1 and command

InverseSeries[Series[g[x],{x,0,4}]]
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From (2) Sommerfeld might have obtained

y(x) = ew(x) = x
w(x)

= 1 + x − 1
2x2 + 2

3x3 − 9
8x4 + 32

15x5 − · · · (3)

which—since he worked long before computers were available to provide
high-precision evaluations of w(x), but had interest only in (complex) x-values
in the that lay close to the origin—would seeming have served his purposes
well;4 carrying the series (3) to tenth order, we find y(0.1) = 1.09557 which
agrees precisely with the reported evaluation of Exp[LamberrtW[0.1]].

First hint of a mystery. The expansion (3) supplies y(0) = 1 but provides
no indication of the fact—evident from the graph of x(y) = y log y—that also
y(0) = 0, or that y(x) is in fact double-valued on the interval −1/e ! x ! 0.
We have

x(1) = 0
x(0) = indeterminate, though lim

y→0
x(y) = 0

Expansion of x(y) about y = 1 gives

x(y) = −1 + 1
2 (x − 1)2 − 1

6 (x − 1)3 + 1
12 (x − 1)4 − 1

20 (x − 1)5 + · · ·

in which the leading coefficient is non-zero, so it is rather mysterious (?) that
the command

InverseSeries[Series[x Log[x],{x,1,5}]]

gives back (3).

Iterative evaluation of Lambert’s function. Today one can evaluate w(x)—or
even w(z), with z complex—by simple command LambertW[z].5 But until
about 1970 people doing numerical calculations involving log x, sin x, etc. had
to consult tables. To evaluate w(z) Lambert, Euler, . . . , Sommerfeld, . . .had,
in the absence of tables, to devise iterative algorithms, of which several are
described in the sources cited above (see especially Corless et al). One, based
on Newton’s method, proceeds

w0 = seed(x)

wn+1 = wn − wnewn − x
ewn(wn + 1)

: n = 0, 1, 2, . . . (4)

Another, based on Halley’s refinement of Newton’s method, proceeds

w0 = seed(x)

wn+1 = wn − wnewn − x

ewn(wn + 1) − (wn + 2)(wnewn − z)
2(wn + 1)

(5)

What value should be assigned to the seed? I follow suggestions of Corless et al :

4 That it would in fact not have is the “paradox”—or at least the surprise—
at issue.

5 To obtain the value assumed at z by w(z) on the nth sheet command
LambertW[n,z].
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At undistinguished typical points take the seed to be given by the first two
terms in the asymptotic expansion of w(z):

seed(z) = log z − log log z

In the neighborhood of the branch point6 use

seed(z) = −1 +
√

2(ez + 1)

In the neighborhood of the origin use

seed(z) = PadeApproximant[LambertW[z],{z,0,{3,2}}]

=
z + 19

10z2 + 17
60z3

1 + 29
10z + 101

60 z2

= z − z2 + 3
2z3 − 8

3z4 + · · ·

or more simply

seed(z) = PadeApproximant[LambertW[z],{z,0,{2,1}}]

=
z + 1

2z2

1 + 3
2z

= z − z2 + 3
2z3 − 9

4z4 + · · ·

Numerical experiments (use z = ztypical + reiϕ, where modest real values are
assigned to r and random real values to ϕ) show that the iteration process (4)
converges rapidly (typically in fewer than half a dozen steps) to an estimate
(accurate to the 9th decimal) of the value of w(z), and that (5) converges even
more rapidly.

In the near neighborhood of the origin one could alternatively use the series
(2). But continuation of the series

w(z) = x − x2 + 3
2x3 − 8

3x4 + 125
24 x5 − 54

5 x6 + 16807
720 x7 − 16384

315 x8

+ 531441
4480 x9 − · · ·− 32000000000000000

14849255421 x20 + · · ·

shows that the coefficients alternate in sign, and grow very rapidly; their growth
is in fact log-linear, with cn ≈ 100.317. The series is useful for |z| < 0.2. But for
larger values of |z| the partial sums converge very slowly, and not at all for |z|
greater than about 4.6.

6 Figures produced by the commands

Plot3D[Abs[LambertW[x+iy]],{x,-2,2},{y,-2,2}]

Plot3D[Arg[LambertW[x+iy]],{x,-2,2},{y,-2,2}]

show that the principal sheet of w(z) possesses a branch cut that runs along the
real axis from −∞ to a branch point at z = −1/e + 0i. The branch points of
higher-order sheets stand at the complex origin. The command Abs produces
the modulus (Abs[1+i]=

√
2) and Arg produces the phase (Arg[1+i]= 1

4π).
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Iterative evaluation of Sommerfeld’s function. From the iteratively generated
sequence {w0, w1, w2, . . .} one obtains by computations yn = ewn a sequence
{y0, y1, y2, . . .} that approaches a solution of Sommerfeld’s equation y log y = z.
But that y -sequence is inferred, not directly iterative.7 Sommerfeld, however,
has proposed an algorithm that proceeds without reference Lambert’s function.
He writes

y0 = z

y1 = z/ log y0

y2 = z/ log y1

...
yn+1 = z/ log yn






(6)

which he abbreviates
y(z) = z

log z
log z

log z
· · ·

and calls a “non-terminating continued fraction,” though it is in point of fact
not a continued fraction but a non-terminating nested function.

The Mathematica command NestList[f[#]&,x,n]//TableForm produces
a list of the successive nestings (through order n) of f(x)—thus8

x

cos x

cos(cos x)
cos(cos(cos x))

—while NestList[f[#]&,x,k] produces the kth entry in that list.

From Figure 1 we see that 0 < y < 1/e entails −1/e < x < 0. To implement
(6) we define

f(x, s) = x
log s

and at x = −0.01 obtain y20 = 0.00154493+3.67862×10−19i, which does (with
the indicated precision) satisfy

y20 log y20 = −0.01

7 I have been unable to cast that sequence as a directly iterative sequence
{y0 → y1 → y2 → · · ·}.

8 One is reminded that when, in the early 1970s, the HP-45 appeared on the
market it did not take long for people to notice that when x was assigned any
value between 0 and 1

2π and the cos key pressed repeatedly (the HP-45 used
RPN), the number 0.739085 invariably appeared, for the reason illustrated in
Figure 3.
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and does so even if the imaginary part of y20 is abandoned. But

yanalytic = exp[w(−0.01)] = 0.989949

is also a solution of y log y = −0.01. The Sommerfeld algorithm has in
this instance led to a solution distinct from the analytic solution.

This situation persists as x proceeds downward toward −1/e = −0.367879,
but one must carry Sommerfeld’s iteration to progressively higher order, as
illustrated below:

x = −0.1

y20 = 0.0279552 + 7.44244 × 10−13i

yanalytic = 0.894194

x = −0.2

y30 = 0.0786584 + 1.13041 × 10−13i

yanalytic = 0.771691

x = −0.3

y40 = 0.168413 + 1.38626 × 10−11i

yanalytic = 0.612993

x = −1/e

y1000 = 0.367143 + 7.95736 × 10−7i

yanalytic = 0.367879 = 1/e

where calculation shows that in all cases the imaginary parts of yn can be
abandoned. Also that the real parts of yn stabilize long before the imaginary
parts, which appear to meander in a leisurely way toward zero.

For positive real values of x the Sommerfeld algorithm produces sequences
in which the real parts stabilize promptly, as do the absolute values of the
imaginary parts (which no longer diminish), but the latter alternate in sign:
the sequence therefore does not converge, so is useless.

Moving way from the real axis, I have set

z = −x(1 + 1
2eiϕ) : x = 0.1, 0.2, 0.3 and ϕ random

and found that again the Sommerfeld algorithm converges to a solution of
y log y = z, but a solution distinct from yanalytic. In particular, Sommerfeld
had physical reason (see page 28 of Warnock’s translation) to look to the case

z = −1.44(1 − i) × 10−7

y20 = (7.49012 − 8.20184i) × 10−9

yanalytic = 1.00 + 1.44 × 10−7
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Again, we have distinct solutions of y log y = z, and have to wonder why
Sommerfeld assigned physical significance to one but not the other (of which,
however, he was ignorant).

The problem in a nutshell. The Sommerfeld algorithm converges—when it
converges—to a solution distinct from the solution y(z) = eLambertW(z) of
Sommerfeld’s equation y log y = z. The problem is to construct an analytic
description of ySommerfeld. Mathematica warned us already at the outset that
we might have missed such a function. How to recover it? The problem looks to
be difficult because the desired function can exist only within the Sommerfeld
iteration algorithm’s domain of convergence, and that—as will emerge from the
last few of the following figures—appears to be difficult to describe.

Figure captions. The 3D figures in the following collection are best viewed in
the Mathematica notebooks from which they were taken, for there they can be
viewed from all angles.

Figure 1. Graph of x(y) = y log y, a real valued function of a real argument.

Figure 2. Graph of x(w) = w ew, a real valued function of a real argument, the
result of setting y = ew.

Figure 3. Representation of the inevitable result of nesting the function cosx,
for any x : 0 < x < 1

2π.

analytical properties of lambet’s function

Figure 4. Modulus of the principle value of w(x + iy) = LambertW(x + iy),
where x ranges (−2 → +1), y ranges (−1 → +1), |w(z)| ranges (0 → 1.7). The
blue line stands at the origin. The red lines indicate the branch cut (which runs
along the negative real axis) and the location of the branch point (which stands
at x = −1/e).

Figure 5. Moduli of the first three sheets of w(z). The branch points of the
second, third and all higher sheets stand at the origin (red line). x and y range
as before, while |w(z)| now ranges 0 → 15.

Figure 6. Phase of the principal value of w(z). The red line indicates the branch
cut, the red/blue dashed line indicates the location of the banch point, which
stands now at the origin. x ranges (−2 → +2) and y range as before, while
phase ranges (−π → +π).

Figure 7. Phase of the second sheet of w(z). x and y range as before, while
the phase ranges (1.6 → 2.3). The tent is peculiar to the second sheet, and the
discontinuity at the cut is much reduced.

Figure 8. Ascending sections of the tent shown in the preceding figure.

Figure 9. Phase of the first three sheets of w(z). Successive sheets become
progressively flatter and more compact.

Figure 10. Central detail of the preceding figure, showing the tent on the second
sheet. All branch points stand at the origin.
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analytical properties of sommerfeld’s function

Figure 11. Modulus of the principle value of Sommerfeld’s function

S(z) = ew(z) = z
w(z)

The branch point stands at x = −1/e and the branch cut runs along the
negative real axis. x ranges (−1.5 → 0.5), y ranges (−0.5 → 0.5), the vertical
scale ranges (0 → 1.7).

Figure 12. Moduli of the first three sheets of S(z). The sheets descend with
ascending order. The branch points of all but the principal sheet stand at the
origin.

Figure 13. Phase of the principal value of S(z).

Figure 14. Phase of the second sheet of S(z). The discontinuity at the branch
cut that runs along the negative x-axis (and terminates now not at x = −1/e
but at x = 0) is now much reduced, and a second curvilinear branch cut has
appeared.

Figure 15. Phase of the first three sheets of S(w).

surfaces generated by sommerfeld iteration

Figure 16. I define F (z, s) = z/ log s and use G[z−]:=Nest[F[z,#]&,z,n] to
produce the result of n-fold Sommerfeld iteration at z. The command

AbsData=Table[Abs[G[0.01 + j + ki
10 ∗ 50 ]],{k,-50,50},{j,-50,50}]

tabulates the values assumed by the moduli of each of the 100 × 100 points
of a lattice with vertices at 1

10 (±1 ± i), which defines what I call the “large
domain.” Experiment shows that 7-place stability is achieved on that domain
with n = 15. The “0.01” shifts the lattice a bit so as to avoid the fact that the
function z/ log z is formally indeterminate at the origin. I use ListPlot3D to
display the data. In the figure the red line marks the x-axis, the blue line marks
the y -axis, the black line locates the origin. The vertical range is (0 → 0.04).
Ripples just shy of the 45◦ lines on both sides of the positive x-axis mark—as
will emerge—the boundaries of the domain where Sommerfeld iteration fails to
converge (because the sign of the phase is an alternating function of n).

Figure 17. That same procedure was used here to produce iterative moduli on
the “small domain” with vertices at 1

10000 (±1 ± i). The vertical range is now
(0 → 13 × 10−6).

Figure 18. Iterative phase on the large domain, with n = 15 (odd). The
vertical range is (−4.5 → +4.5). Produced as before with Abs replaced by
Arg, and displayed by ListPlot3D[Data, InterpolationOrder→3]; i.e., with
interpolation accomplished by means of a cubic polynomial.

Figure 19. The same, but with n = 16 (even). Note the phase reversal in the
triangular non-convergent domain.
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Figure 20. Iterative phase on the small domain, with n = 15 (odd). The vertical
range is (−3 → +3). The non-convergent domain is now narrower, indicating
that it curves away from the x-axis as x increases.

Figure 21. The same, but with n = 16 (even).

Figure 22. Here, by way of contrast, is a display of the modulus of the principal
value of Sommerfeld’s function S(z) on the small domain. The vertical range is
(0.99990 → 1.00010), which is to say: the modulus ranges in the neighborhood
of one, while (Figure 17) the iterative modulus ranges in the neighborhood of
zero.

Figure 23. Display of the phase of the principal value of S(z) on the small
domain. Compare Figures 20 & 21.

Concluding remark. Figures 18–21 indicate why one can expect the production
of an analytic function that reproduces the convergent points of the Sommerfeld
iteration procedure to be difficult, particularly since in the neighborhood of
the origin the convergence domain is known to be awkwardly shaped, and its
boundary in regions remote from the origin remain uncharted.

ADDENDUM: THE PROBLEM SOLVED

No sooner had the preceding material been rendered as a pdf draft than
it occurred (actually re-occured) to me that my problem might trace to the
circumstance—made evident by the graph of x(y) = y log y [Figure 1] and
remarked already on page 3—that while y(x) is double-valued on the interval
−1/e ! x ! 0, the function y(x) = exp[LambertW(x)] isn’t (compare Figures
24 & 25; the latter fails to reproduce the red portion of the former).

But the Lambert W-function is, of course, infinitely multivalued; the
construction

yn(x) = Exp[LambertW[n,x]] : n = 0, 1, 2, . . .

produces an infinitude of functions. But of those,

fn(z) ≡ yn(z) log yn(z) − z

vanishes for (all z: see Figure 26) only in the case n = 0; i.e., on the principal
sheet.9 In higher order (n = 1, 2, . . .) those functions fail to vanish aywhere,
which is why I have dismissed them from consideration.

There exists, however, yet another branch of the Lambert W-function.
It arises from setting n = −1, and is real on (and only on) the real interval
−1/e ! x ! 0 [Figure 27]. From Figure 28 we see that it does precisely the job
that is required . Analytic properties of y−1(z) are illustrated in Figures 29–32.

9 I call fn(z) the “analytical fault function of order n” because when non-zero
it quantifies the extent to which yn(z) fails to satisfy Sommerfeld’s equation.
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At z = −1.44(1−i)×10−7 we obtain y−1(z) = (7.49012−8.20184i)×10−9,
in precise agreement with Sommerfeld’s interative y20, as reported on page 6:
the function y−1(z) has here reproduced a result obtained by convergent
Sommerfeld iteration. One might infer from this isolated result that (i) the
analytic fault function f−1(z) vanishes for all z, and (ii) that it reproduces the
result of Sommerfeld iteration when that process converges. Both inferences
are, however, profoundly in error, as I will demonstrate.

Figure 33 (compare Figure 26) indicates that f−1(z) vanishes only on a
domain that is largely confined to the upper left quadrant of the complex plane;
elsewhere it assumes complex non-zero values (Figures 34 & 35).

The “iterative fault function” F (z) arises from

f(x, s) = x
log s

by
Y[z-]:= Nest[f[z,#]&, z, 25]
F[z-]:= Y[z]Log[Y[z]] - z

Figures 36 & 37, which display (respectively) the real and imaginary parts of
F (z), indicate that Sommerfeld iteration produces solutions of the Sommerfeld
equation except on the curvilinear wedge where—as shown in Figures 18–21—it
fails to converge (because phase has become an oscillatory function of iterative
order).

Comparison of Figures 33–35 with Figures 36–37 indicates that while the
null zones of f−1(z) and F(z) intersect (mainly on the upper left quadrant), they
are not coextensive: there are points z at which both vanish, points at which
one but not the other vanish, points at which neither vanish, as I demonstrate:

at z = −0.1 + 0.1i

{
f−1(z) = 0

F (z) = 0

at z = −0.4 + 0.1i

{
f−1(z) = 0

F (z) = 0.00002 + 2.48989 × 10−7 i

at z = +0.1 − 0.1i

{
f−1(z) = −0.14383 + 0.01782 i

F (z) = 0

at z = +0.4 − 0.1i

{
f−1(z) = −0.48910 − 0.13555 i

F (z) = −0.52998 − 0.23586 i

Figures 36–37 are, however, deceptive, mainly because they refer to a complex
domain (vertices at 0.1(±1 ± i)) too small to include the point x = −1/e, but
also because of the limited resolution. Sommerfeld, in his 1899 paper, remarks10
that “convergence questions [relating to his iteration procedure] are settled
completely (at least for the case of real z) are settled completely in a special

10 Page 26 in Warnock’s translation.
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note.11 Simple convergence is, of course, quite another thing than convergence
to a solution of the Sommerfeld equation. Figures 38 & 39 show, respectively,
the real and imaginary parts of the values assumed by F (z) on the real line.
The oscillations bunch ever closer to x = −1/e as the order of the iteration
is increased, but the sign of the slope of the ramp (x positive) in Figure 39
depends on the parity of the order. The asymptotic implication appears to be
that F (x) vanishes for x )= −1/e < 0.

But all hell breaks loose when one moves off the real line: see Figure 40.

Epilogue. These pages are simply the record of some experimental mathematics.
They provide analytical discussion or proof of absolutely nothing, which is to
say: they contain no mathematics. I feel obliged in the light of this circumstance
to mention that the Wikipedia article cited on page 2 provides a list of sixteen
simple-seeming problems that lead by proper mathematics to occurances of the
Lambert W-function. I look to a single example (Example 4, where the topic
is treated by other means than those that follow), selected because of its close
relation to Sommerfeld’s problem.

It was, I think, Euler12 who first considered the evaluation of

h(x) = xxx
...

= xh(x) (7.1)

The logarithm of (7) reads log h(x) = h(x) log x, which can be written

1
h(x)

log 1
h(x)

= − log x

But this is an instance of Sommerfeld’s equation, so we have at once

1
h(x)

= − log x
w(− log x)

or h(x) = w(− log x)
− log x

(7.2)

Corless et al , who treat the problem briefly on their pages 4–5 (and are the
source of all my historical references), report that this is an ancient result, due
to G. Eisenstein,13 and that Euler himself had established that the exponential
iteration converges for e−e < x < e1/e; i.e., for 0.065988 < x < 1.44467.
But when one plots [Figure 41] the expression on the right side of (7.2) one
finds convergence for 0 < x < e1/e, with h(0) ≈ 0.102 (seems implausible)
and h(e1/e) = e. Convergence for complex values of x has been discussed by

11 Whereupon he cites “Uber die numerische Anflösnug transcendenter
Gleichungen durch successive Approximationen,” Gött. Nachr., December 1898,
of which Warnock has promised an English translation.

12 “De formulis exponentialibus replicatis,” (1777). Iterated exponentials are
called “tetrations,” and are the subject of an interesting Wikipedia article.

13 “Entwicklung von aa
...

,” J. reine angewandte Math 28, 49–52 (1844).
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I. N. Baker & P. J. Rippon.14

I look finally to a closely related story in which again Euler is a principal
player. Chapter 5 of Julian Havil’s challenging Martin Gardneresque little
book Impossible: Surprising Solutions to Counterintuitive Conundrums (2008)
is entitled “The power of complex numbers,” and proceeds from an account to
the history of the problem of evaluating ii. Johann Bernoulli had argued that
log i = 0, but Leibniz demonstrated that such a result leads to a contradiction.
It was Euler who established that log i = i( 1

2π), and that more generally

log i = i( 1
2π + 2πn)

giving ii = [ei( 1
2 π+2πn)]i = e−( 1

2 π+2πn) (8)

It is a familiar fact that log z is multi-valued, but—as Euler himself pointed
out—quite remarkable that ii assumes an infinitude of real values:

ii =






59609.7 : n = −2
111.318 : n = −1
0.2078795763507 : Euler’s hand-calculated result
0.00039 : n = +1
7.24947 × 10−7 : n = +2

If we define p(x, a) = xa then the command NestList[p[x,#]&,x,3] produces
{x, xx, xxx

, xxxx

}. As remarked above, Euler has described the real x-values for
whichthat exponential iteration converges. Lookingto NestList[p[i,#]&,i,n]
we find that the result is imaginary (namely i) in the case n = 0, real in the
case n = 1, and complex in all higher order cases. And that the sequence shows
clear evidence of convergence. In particular, we find

Nest[p[i,#]&,i,100] = 0.438283 + 0.360599i

while Nest[p[i,#]&,i,∞] ≡ h(i) = 0.438283 + 0.360592i

Captions for addendum figures

Figure 24. Graph of x(y) = y log y (compare Figure 1), showing in red the
sector that gives rise to the double-valuedness of y(x).

Figure 25. Graph of y0(x) = exp[LambertW(0, x)].

Figure 26. Graph of the analytic fault function f0(z) = y0(z) log y0(z) − z,
which is seen to vanish everywhere except on the cut. By fixed convention, the
x and y are red/blue. The red vertical marks the location of x = −1/e.

Figure 27. Graph of y−1(x) = exp[LambertW(−1, x)].

Figure 28. Superposition of Figures 25 & 27. Shows that both W sectors are
required to reproduce the double-valuedness of Figure 24.

14 “A note on complex iteration,” Amer. Math. Monthly 92, 501–504 (1985).
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Figure 29. Modulus of y−1(z). The x (red) ranges (−1.5 → 1.0), y (blue) ranges
(−1.0 → 1.0), the vertical scale ranges (0 → 1). The cut runs all the way to
the origin (black axis). The dashed red line marks the location of x = −1/e.

Figure 30. Phase of y−1(z). Same conventions as above, except that the vertical
scale ranges now (−π → π). In addition to the discontinuity that runs along
the negative x axis there is now a curved phase discontinuity. A green line
segment marks points where the phase vanishes (y−1(z) becomes real).

Figure 31. A magnified view (at higher resolution) of the central region of the
preceding figure: x ranges (−1/e − 0.1 → 0.1), y ranges (−0.1 → 0.1).
Figure 32. Lines of phase discontinuity for y−1(z).

Figure 33. Graph of the analytic fault function f−1(z) = y−1(z) log y−1(z)− z,
of which the null zone is seen to lie mainly in the upper left quadrant of the
complex plane.

Figure 34. Real part of f−1(z). x ranges (−4 → 2), y ranges (−3 → 3) and the
red vertical marks x = −1/e.
Figure 35. Imaginary part of f−1(z). The null zone is again clearly evident.

Figure 36. Real part of the iterative fault function F (z), with indication of the
curvilinear wedge where iteration fails to converge.

Figure 37. Imaginary part F (z). The part within the wedge flips sign when the
iterative order advances from even to odd.

Figure 38. Values assumed by the real part of F (x) on the negatively extended
real line. The oscillations in the region just below x = −1/e bunch ever more
tightly as the iterative order is increased, but the spike at that critical point
appears to remain.

Figure 39. Values assumed by the imaginary part of F (x) on the negatively
extended real line. The slope of the ramp to the right of the origin—where
x has entered into the interior of the curvilinear wedge—flips sign when the
iterative order advances from even to odd, indicating a failure of convergence.

Figure 40. Real part of the iterative fault function F (z), the same as Figure 36
except that x has been extended past −1/e to −0.4, revealing the onset of great
complexities, of which Figure 38 exposed a symptom.

Figure 41. Graph of Euler’s iterated exponential h(x).


